Posts Tagged ‘sensors’

Samsung Sensor is First to Capture Image and Depth Data at the Same Time

Samsung has developed what the company claims is the world’s first CMOS sensor that can capture both RGB and range images at the same time. Microsoft’s Kinect has received a good deal of attention as of late for its depth-sensing capabilities, but it uses separate sensors for RGB images and range images. Samsung’s new solution combines both functions into a single image sensor by introducing “z-pixels” alongside the standard red, blue, and green pixels. This allows the sensor to capture 480×360 depth images while 1920×720 photos are being exposed. One of the big trends in the next decade may be depth-aware devices, and this new development certainly goes a long way towards making that a reality.

(via Tech-On! via Gizmodo)

Nokia’s 41-Megapixel Camera Phone Sensor Compared to Other Sensors

Here’s a great diagram by Mobot that shows how the 41-megapixel sensor inside Nokia’s new 808 PureView phone stacks up against other popular sensor sizes. It’s pretty clear that they didn’t just milk a small sensor for more megapixels as a simply marketing ploy, but instead came up with a sensor that’s significantly larger than those found in other smartphones. Engadget also has a photo showing a comparison of sensor sizes, while Digital Trends has published an article on five reasons why the 41-megapixels isn’t a gimmick.

(via Mobot via PhotographyBLOG)

A Simple Explanation of How ISO Works in Digital Photography

If you’re a fan of learning things through Khan Academy, then you might enjoy learning about how ISO works in this similar-styled tutorial by Dylan Bennett. Bennett might not have Salman Khan’s soothing voice, but he does his best to break down the magic of digital camera sensors into easy to understand ideas. For a more detailed and comprehensive understanding of how things work, check out Cambridge in Colour’s excellent tutorials.

The Size of Lytro’s Sensor Compared with Other Common Formats

Devin Coldewey of TechCrunch created this helpful diagram showing the relative sizes of various sensors, including the one found inside the Lytro light field camera (a camera that lets you focus after shots are taken). The FCC published photos of the Lytro camera’s guts last week, revealing that the sensor inside is roughly 6.5×4.5mm (smaller than our previous estimate). This means that it’s slightly larger than the iPhone sensor and slightly smaller than the one in most point-and-shoot cameras.

Another interesting finding is that the chip inside supports Bluetooth and Wi-Fi. The company says that they’re working on wireless connectivity, but doesn’t have it enabled in the initial Lytro camera.

Lytro Teardown Shows Potential Wireless Capability, Smallish Sensor [TechCrunch]

A Simple Introduction to Light Painting and Camera Sensors

Destin of Smarter Every Day made this helpful video in which he and his daughter explain the basics of light painting and digital camera sensors using “super simple speak”.

The Truth About Fractional Sensor Size Measurements

Ever wonder why camera manufacturers these days are describing often sensor sizes with fractions instead of millimeters? Roger Cicala of LensRentals explains:

[...] then we get into all of these fractional-inch-type-measurements for the smaller sensors. That measurement system originated in ancient times (the 1950s to 1980s) when vacuum tubes were used instead of CCD or CMOS sensors in video and television cameras. The image sensor was, in those days, referred to in terms of the outside diameter of the vacuum tube that contained it.

Why do manufacturers keep using such an archaic measurement? Because it helps them lie to you, of course. If you do the math 1/2.7 equals 0.37 inches, which equals 9.39 mm. But if you look at the chart above you’ll see that a 1/2.7″ sensor actually has a diagonal of 6.7 mm. Why? Because, of course, a thick glass tube used to surround the sensors. So they calculate the sensor size as if the glass tube was still included. Makes perfect sense to a marketing person who wants to make their sensor seem larger than it is. What sounds better: 1/2.7″ or ‘less than 10% the size of a full frame sensor’?

If you have a few minutes, give his entire post on sensor sizes a read — it’s quite illuminating.

Sensor Size Matters [LensRentals Blog]


Image credits: Photograph by Sphl

Kodak Sells Off Its Sensor Business to Add Some Cash to Its Wallet

After arriving late to the digital photography party, Kodak took another step away from the market yesterday by selling off its sensor business to CA-based firm Platinum Equity. The sale of Kodak Image Sensor Solutions (KISS) — which includes the company’s 263,000 square foot facility in Rochester — will hopefully give Kodak the boost of cash it needs to avoid bankruptcy and turn into a healthy business. Kodak sensors are found in a number of popular cameras, including the Leica M9 and S2.

The company is also looking into selling a chunk of its patents to raise more cash, which will help it in its current efforts to transform into a printer and ink company.

(via Business Wire via 1001 Noisy Cameras)

Sony’s Sensor Manufacturing Plant Hit Hard by Thailand Floods

Here’s a photograph by the The Bangkok Post showing Sony’s sensor manufacturing plant in Thailand submerged under flood waters roughly 3 meters (~10ft) high. The shutdown of the 502,000 square foot, 3,300 employee plant doesn’t just affect Sony, as other companies — including Nikon and Apple (in the iPhone 4S) — rely on Sony image sensors as well.

(via Bangkok Post via Nikon Rumors)


Image credit: Photograph by Pattarachai Preechapanich/The Bangkok Post

Graphene Creates Electricity When Struck by Light, Could Yield New Sensors

MIT scientists have discovered that graphene, a material consisting of one-atom thick sheets of carbon, produces electric current when struck by light. The researchers say the finding could impact a number of fields, including photography:

Graphene “could be a good photodetector” because it produces current in a different way than other materials used to detect light. It also “can detect over a very wide energy range,” Jarillo-Herrero says. For example, it works very well in infrared light, which can be difficult for other detectors to handle. That could make it an important component of devices from night-vision systems to advanced detectors for new astronomical telescopes.

No word on when DSLRs will start packing graphene sensors.

(via MIT via ExtremeTech)


P.S. Did you know that graphene was first discovered in 2004 after a thin layer of pencil lead was pulled off using some ordinary tape?


Image credit: Illustration by AlexanderAlUS

Is Micro Four Thirds the Optimal Sensor Size for Mirrorless Cameras?

Many Nikonians would have been overjoyed if Nikon’s mirrorless cameras had been announced with an APS-C sensor instead of a 1-inch one, but are DSLR-sized sensors the best fit for smaller interchangeable lens cameras? Michael Johnston over at The Online Photographer says no, arguing that Micro Four Thirds is the optimal size:

APS-C sensors work fine in fixed-lens mirrorless cameras, such as the Leica X1 and the Fujifilm X100. And while NEX is making its own splash and winning its own adherents, many have pointed out that the over-large sensor is distorting the size of the lenses, preventing them from being miniaturized in proportion to the cameras. On the other hand, Micro 4/3 really does seem to have it right: the sensor is big enough, but not too big; small enough, but not too small. The cameras are right-sized, the lenses are right-sized. Everything’s in balance. Everything fits.

Since one of the main reasons for going mirrorless is compactness, perhaps APS-C sensors should be left to larger DSLR-sized cameras like the Sony A77 (which has been getting some glowing reviews, by the way).

Micro 4/3 is the Big Kahuna [The Online Photographer]


Image credit: Goldilocks by violscraper